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The evolution of supercritical perturbations in a horizontal layer of a visco- 
elastic fluid is analyzed, this layer being heated from below. 

A study of convection in viscoelastic fluids has established that at definite values of 
the elasticity parameters there occurs an instability of the vibrational kind which does not 
occur under the same conditions in a Newtonian fluid [I]. Characteristic anomalies of vis- 
coelastic fluids can also become evident during further evolution of perturbations into the 
supercritical range [2]. 

It has been demonstrated [3] that in a fluid describable by a Rivlin--Ericksen equation 
of state vibrational instability occurs before monotonic instability. It is interesting to 
examine the evolution of perturbations into the supercritical range for such a fluid. This 
study will deal with the effect which the elasticity of the fluid has on the evolution in 
time within the range of small supercriticality. 

The rheological equations of state will be written in the form 

�9 (1) . (1)^0) (2) 
Xi i = k~.zii "-~ pai~ -h i  q-  "~aii �9 

We now consider an infinitely large horizontal layer of thickness d heated from below. 

The equations of convection in dimensionless form are 

Otu~ -k  P , i - k  Ra08~a-- u~,:: = Sq ,  i - -  uju~, i, ( 1 ) 

Pr0t0 - -  0,jj - -  u a =  - -  Pr  uj0,~. (2)  

We consider the case of two free boundaries 

0 = tt 3 = tta,aa= 0 at ;ca= 4- 1/2. 

Here  i s  a l i n e a r  a n a l y s i s  o f  c o n v e c t i v e  s t a b i l i t y .  I n t r o d u c t i o n  o f  n o r m a l  modes ,  a c c o r d i n g  
t o  t h e  p r o c e d u r e  i n  l i n e a r  t h e o r y ,  y i e l d s  t h e  e q u a t i o n  

(iSPr - -  V z) [i6 - -  (1 q- ?i5) vZl V z W  q- R a a 2 W  = 0 (3)  

w i t h  t h e  b o u n d a r y  c o n d i t i o n s  

I V = = I V , a a =  W , a a s a = 0  at % =  4-  1/2.  ( 4 )  

L e t t i n g  W = cos  ~x3 ,  E = exp [ i ( k x l  -- ; x2  + S t ) I ,  we w r i t e  t h e  s o l u t i o n  t o  Eqs .  (3)  and  

(4) as 
ik 

u a = A W E ,  u l = - -  A W , a E ,  
a 2 (5) 

il A W , a E ,  0 -  A I V E  
u2 = a z i6Pr q- aZ-+ - a 

with k 2 + 12 = a 2. 

For a nonlinear analysis we use the theory [4-6] based on the multiscale method. 
small parameter e will be defined as 

R a - - R a o  
8 2 

Rao 

w i t h  NRa, o d e n o t i n g  t h e  c r i t i c a l  v a l u e  o f  t h e  R a y l e i g h  n u m b e r  and  T = Ct .  

The 
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procedure in [2], we expand 

0 = 0(~ 0 0 ) E +  O*(~)E-~ 0(~)E~-/-0*(~)E-~+ 

where 

(6) 

0 ( '~  0(~~ e); 0 0) . . . ;  0 ~~ k 3, T, : e0(11) @ e20(12)@ e30(I3) + ~- e20(02)@ 

@ 330 (03) -@ . . . - 0(2)= 820(22)+ 830(23) _}_ . . . ; 0(3).----- ~ E30(33)@ . . . ; 

with the asterisk denoting complex conjugates. The series expansions of ui and P are anal- 
ogous, 

I n s e r t i n g  e x p r e s s i o n  (6 )  i n t o  Eq .  ( 1 ) - ( 2 )  an d  e q u a t i n g  t h e  t e r m s  o f  l i k e  p o w e r s  i n  ~nEm, 
we o b t a i n  t h e  e q u a t i o n s  o f  s u c c e s s i v e  a p p r o x i m a t i o n s .  The  sE t e r m s  y i e l d  t h e  s o l u t i o n  a c c o r -  
d i n g  t o  l i n e a r  t h e o r y .  A c c o r d i n g  t o  [ 2 ] ,  we h a v e  f o r  ~2E~ 

u~02)=~ ="~~ = O, 

0(02) = Pr  (a~ § a a) IA~ sin 2nx~ 
2~ [5~Pr ' o (a? + a2) ~1 

for e2E 

and for r = 

b 0 2 )  , 0 2 )  ,03) = - 2  = - 3  = 0  O 2 ) = 0 ,  

u]22)=u~221= ".3(~2) = 0 c~) = O. 

Let us examine the terms of expansion for c~E 

S~j= ~a~aak: + ? (O~aij + tQaii,i + akjUh,f+ aihuh,i), 

(aikahj)O 3)= ,-ih/-(~ -hi ~(~ 1)_~_ a*~: ~) a~}2)+ -ihA22) ct:,i*(' l>___r ~i~A' I) a(k02)) a3 E = 0. 

A n a l o g o u s l y ,  a l l  n o n l i n e a r  t e r m s  i n  t h e  e x p r e s s i o n  f o r  S i j  a r e  z e r o  s o  t h a t  

The t e E - o r d e r  t e r m  i n  t h e  e q u a t i o n  o f  h e a t  c o n d u c t i o n  i s  

The c3E t e r m s  ~n E q s .  (1 )  a n d  (2 )  a r e  t h e n  

- - , ~  - -  - -  u i , i /  = '~C)~lAi.i/ , 

,,(1 ~)ta (02) Pr  O~0 (~ ~)-- 0,}} a ) -  u~ ~3) = P r . 3  -,~ �9 

The solution ks 

where 

/,(13) o 

3 = Raoa~ (LO~A -- A + K [AIM) W --Y cos 3~x_~, 

i 6Pr  + a2o -Jr- a 2 + Raoa Zo + y Raoag 

1 Pr  z (a:o + :~z) 

2 62Pr 2 -J- (a~ -}- z~2) 2 

*(~) yields The condition of orthogonality for u3 (~) to u~ 

(7) 
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O~A = diA :t- Ki ]A[2A, 
where 

�9 d t : L - l ;  K t : - - 2 L - I K .  

The form of Eq. (7) is the same as that of the corresponding equation in [2]. The coeffi- 
cients dz and KI differ from the coefficients in that other equation, because another model 
of the fluid has been used. We now expand in the vicinity of i6o: 

i6 : i ~ - - i v ~ ( k - - k o ) - - i v 2 ( l - - ~ ) - - a ( k - - k ~ ) - - 2 h ( l - - l o ) ( k  - - k o ) - - b ( l - - ~ ) + d ~ ( R a - - R a o ) R a ~  ~. (8)  

This dispersion relation (8)  is associated with a wave packet. Here v~ and v2 are the group 
velocities of a wave packet. 



We now define new variables 

so  t h a t  t h e  a m p l i t u d e  e q u a t i o n  c a n  be  w r i t t e n  a s  

O~A - -  aiA,r - -  2hA,tn - -  bA,nn = dtA - -  K1 IAI2A). 

F o r  t h e  c a s e  o f  s t e a d y  c o n v e c t i o n  we o b t a i n  v l  = v2 = 0 f r o m  t h e  r e q u i r e m e n t  t h a t  i6  be  a 
r e a l  q u a n t i t y ,  so  t h a t  

di = 3n 2 [2 (Pr + 1 ) +  3aZ~l -i, 

16 16 
a i - =  , dik~o, b = -  

9~* 9 ~  

A few transformations yield finally 

K i -  2Pr2di , 
3a 2 

, h = a i b .  

2i 1 ) 
O ~ A -  a~ A,~.~ . l /_ ~ A,~h h 2a  z A , ~ h  = diA + Ki [A[2A, (9)  

where ~ = ~I/2x2. 

Thus, expression (9) determines the behavior of the perturbation amplitude. The sign 
of the fast-varying KIIAI2A term determines the possible evolution of perturbations. For a 
Newtonian fluid KI < 0, i.e., this term decreases fast. With increasing time T the ampli- 
tude approaches its steady-state value 

A s s =  (3~2/2Pr2) ' /2 

regardless of whether it was larger or smaller than Ass at instant T = 0. 

For a second-order fluid it is theoretically possible that dl < 0, and then K~ > 0 at 
some value of the parameter of the fluid. In this the relation A(T) is of a different char- 
acter than in the case of a Newtonian fluid. It follows from Eq. (9) that a perturbation 
decays when its amplitude is smaller than Ass. When the amplitude at time T = 0 is larger 
than Ass, then the positive cubic term in Eq. (9) makes it increase infinitely "discontinuity- 
wise." The value of the parameter determining this range is defined by the inequality 

? < - -  2 (Pr + 1) /3~  2. 

The behavior of the perturbation amplitude is similar and yet different in the case of an 
Oldroyd fluid within a certain range of parameter values [2], where a "discontinuity-wise" 
increase of the perturbation amplitude has been found to occur regardless of its initial 
value. 

In real viscoelastic fluids such as polymer solutions it is obviously very difficult to 
track the behavior of perturbations occurring in a second-order fluid within a definite range 
of parameter y. As an example, let us consider an aqueous solution of dextrin with NPr 
6000 at 0 = I g/cm ~ [7]. A layer here should be 1.5"10 -a mm thick. This conclusion is anal- 
ogous to the conclusion about the probability of a vibrational instability, theoretically 
predicted [i] but hardly possible to confirm experimentally. 

NOTATION 

zij deviator of the stress tensor; a (I) a (2) Rivlin--Ericksen tensors; ~, dynamic 
' ik ' ij ' 

viscosity; ~, y, material constants of a second-order fluid; 3t, operator of differentiation 
with respect to time; j, a partial derivative with respect to corresponding xj coordinate; 
t, time; 6, perturbation decrement; 60, critical decrement; 8, temperature perturbation; ui, 
velocity; A, nabla operator; Npr, Prandtl number; NRa , Rayleigh number; NRa,o, critical value 
of the Rayleigh number; ao, critical wave number; W, vertical distribution of the perturba- 
tion velocity; A, perturbation amplitude; ~, small parameter; *, a complex conjugate; r, 
"slow" time; aij, strain rate tensor; Sij = Tij -- aij; 3T, operator of differentiation with 
respect to "slow" time; ko, lo, components of the crltical wave vector; vl, v2, group veloci- 
ties of a wave packet: al, b, h, a2, dl, coefficients in the amplitude equation; and Ass, 
steady-state amplitude. 
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STABILITY OF THE FLOW OF A ROTATING LIQUID FILM ALONG THE 

INSIDE SURFACE OF A CYLINDRICAL TUBE 

P. B. Begoulev and B. G. Froishteter U])C 532.517 

Under consideration is the problem of formation of Taylor vortices in a rotating 
film of a viscous incompressible fluid. 

Recently, film flow of a rotating liquid has become used on a wide scale in diverse 
equipment of the chemical industry (evaporators, heat exchangers, chemical reactors). Super- 
position of rotation on gravity flow of a film facilitates uniform spraying of the equipment 
surface, especially at low rates of liquid consumption, and appreciably intensifies heat and 
mass transfer processes [I-3]. The principal parameter determining this intensification is 
the stream whirl factor numerically equal to the tangent of the angle between the line of 
flow and the generatrix of the tube. It has been established [2] that with tan B ~ l a heat 
transfer coefficient more than twice as high as during gravity flow of the film is attainable. 
This intensification effect weakens as tan B decreases and, when tan B < 0.1, it becomes 
negligible. Therefore, selection of the optimum tube height for imparting rotation to a film 
is one of the more important problems in rational equipment design. As is well known, under 
such conditions a film unwhirls along the height, because of friction at a solid surface, and 
tan B decreases correspondingly. This decrease along the tube height is not monotonic, how- 
ever, and experiments have revealed [3] that at a certain spray density the tan B curve be- 
gins to break at some point, with the rate of change of tan B much higher along the initial 
segment than beyond this break point. This trend is illustrated graphically in Fig. I: Ex- 
perimental data are shown here obtained in another study [4] with flow of a water film along 
the surface of a tube 3"10 -2 m in diameter at a temperature of 19~ 

Exponential decreasing of tan ~ along the tube height has been established theoretically 
[3] and confirmed experimentally, as shown in Fig. I. As to the break point and the corre- 
sponding change of the attenuation rate (at B > $cr the whirl factor decreases approximately 
5.7 times faster), no satisfactory explanation of this phenomenon has yet been found. Mean- 
while, determination of the critical tan B corresponding to the break point on a tan B = g 
(z/R) curve is of great practical importance, because maximum intensification of the transfer 
processes can be expected to occur within the initial range. 

A break point on the tan B curve can be regarded as a consequence of a substantial change 
in the conditions of flow and, particularly, loss of stability so that a solution to the equa- 
tions of laminar flow would not reveal it. Such a phenomenon is generally characteristic of 
flow of a liquid in the field of centrifugal forces. In the case of flow of a liquid between 
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